Contents

1. Introduction

2. The need for knowledge systems

3. Problems associated With the development of expert systems

4. Comparison of the development of procedural systems and knowledge
systems

Capturing of knowledge for designing a knowledge system
System development and design of expert systems

ISM procedure

Method for correcting knowledge

Example System

10. Conclusion and discussion

Development of Design Techniques for Knowledge Systems
Nobuhiko Seike

< Keywords >
Knowledge Systems, System Design, Expert Systems, Knowledge Base,
ISM

1. Introduction

In recent years there has been a great deal of activity in the area
of developing knowledge systems, with the major aim being the creation
of practical working systems. The term ’'knowledge system’ refers to
computer systems which are constructed around the processing of knowledge
in a non — procedural way. This is in opposition to mainstream computer
systems which use procedural methods of computation. Expert systems
are one example of knowledge systems. They are currently used for such
applications as determining credit ratings in financial institutions, fault —
detection in manufacturing systems etc., machine translation, and image/

voice recognition.”

However, if we look at the design techniques used for developing these
systems we can see that in fact a great number of them still employ
techniques used in developing procedural systems. As a results we can
see that as far as the design of knowledge based systems is concerned,
there has not been the necessary shift away from the old techniques
used in developing procedural systems.

Of course, knowledge systems vary a great deal in their design and
configuration, depending on the intended objective of the system.However,
no matter what the objective, it is still true to say that they are clearly
defined as knowledge systems by the fact that they require a different
type of development method to procedural systems, which operate on
an algorithmic basis.

This paper will present a new kind of design technique for developing
expert systems, founded on the use of knowledge bases. These techniques
will be compared to current design techniques for developing procedural
systems. At present, the most widely used design techniquesare® based
on the sequential control method® which is characteristic of the Neumann
— type computer. With these techniques the emphasis is put on creating
algorithmic procedures, working from the initial system analysis stage
right through to the final coding stage.

However, in developing systems using knowledge bases, such as expert
systems, the emphasis shifts away from procedures on to the system
development, where the main emphasis is the acquisition and representation
of knowledge. Because of this, existing system development techniques
are not fully able to cope with the need to acquire and represent knowledge.

Here, a new technique for system development and system design will
be put forward . This is based on a predicate language which describes
the logical structure of knowledge bases, and shows how to collect, organize

and store information (facts and rules) which accumulates in the knowledge

base.

The core features of this technique are

1) a method for knowledge acquisition based on a predicate language
which expresses the structure of the knowledge base

2) management of knowledge using modularization

3) prototype modeling for aiding system development

2. The need for knowledge systems

It is now almost 50 years since computers came into use, and they
are now used in every facet of daily life. The way they have been used
is to proceduralize the actions and ideas of humans, store these procedures
and perform tasks formerly carried out by humans. In virtually all of
these cases the emphasis has been on the development of methods for
programming and system design based on these procedures.

However, with the emergence of the so — called "information oriented
society”, which has been created through the improvement and enhancement
of computer hardware and software, there has been an inevitable shift
in data processing technology, away from procedural based programming
towards programming technology based on knowledge systems.

The reason for this is that human behaviour arises from activities
which use knowledge, such as association and creativity, and not simply
as algorithmic behaviour.

As part of this shift, data processing technology is now able to perform
a greater range of data processing functions. However the design and
development of computer systems has not kept pace with these changes
and is still heavily based on procedural methods of design.

This is the major reason why there has not been greater development
of knowledge based systems, most of the work being left to only a handful
of individual experts. As a result of this, the design and development
of knowledge systems has used procedural based techniques with only
a few superficial changes.

Even though there are still many open — ended questions on how to

develop knowledge based systems, as this technology is in the formative

stage, there is a growing need for the establishment of effective system
development and design methods for developing these type of systems.

Here, a workable specification for the system design and development
of knowledge based systems will be presented by giving an example of
the development of an expert system. The following is a proposal for
a working specification for the design and development of a knowledge

system, based on an actual example of an expert system.

3. Problems associated with the development of expert systems

Firstly, the problems associated with the development of an expert
system will be discussed focusing on the configuration of the different
functions in the system. The configuration of an expert system® is shown
in Figure 1. The core modules of the configuration are the ”knowledge
base”, ”inference engine”, and the ”knowledge acquisition mechanism”,
" explanatory mechanism”, "user interface mechanism” which make use
of the knowledge base and inference engine.

When creating a new expert system it is generally the case that an
existing inference engine, called an ”expert shell”, is used rather than
creating a totally new inference engine. Because of this, in many cases,
the knowledge base is created independently of the inference engine.

However, even though the system design is carried out without reference
to the inference engine, if the system developer knows the inference methods
used in the inference engine this will help with knowledge acquisition.
Therefore, a method for aiding knowledge acquisition must be devised
allowing the developer to incorporate information about the inference
engine.

For example, when using a production system as a method of inference,
because inferencing is carried out using IF — THEN relationships it is
desirable to have a method for inputting information which can represent
these relationships in a concrete way. Also, when using a frame system
it is desirable to have a method for providing representations of the

frame hierarchy structure and changes in results caused by parameter

variation.

Also, when using a production system it is desirable to have a chart
which shows the inferencing processes. The reason for this is that the
thought processes of the experts who provides the knowledge may vary.
Also, the ability of the expert to correct knowledge when creating the
knowledge system may also vary, depending on whether or not backward
reasoning, forward reasoning or bidirectional reasoning are used.

However, because information about rules in the knowledge base is
used in the building of the reasoning process, it is necessary to devise

different methods for looking at rules to those used for deducing facts.

Knowledge Base Inference Engine
| 1

Knowledge Acquisition Explanatory

. . User Interface
Mechanism Mechanism

' [| H

L] : [L

Expert System Developer E User

Figure 1 configulation of expert system

Next, we can summarize the problems associated with building an expert
system, according to the individual roles of the participants in the project,
in the following way. The two people who have the greatest influence
on the process of building the system are the domain expert, who provides
the knowledge of the domain, and the system developer who configures
the system. The domain expert provides the knowledge used to create
the knowledge base. However, this knowledge is of two types, conscious
(actual) knowledge which is in an identifiable form, and unconscious
(potential) knowledge of which even the expert himself may not be aware®.

Therefore a special method of extracting the knowledge held by the expert

is required_. There is also a need to classify the knowledge in terms
of knowledge about facts, knowledge about procedures, and knowledge
which shows relationships between facts.

On the other side of the process, the system developer configures the
expert system using the knowledge given by the expert. As the system
developer is not an expert in the domain knowledge it is necessary to
devise a common base of communication between the expert and the developer
in order to extract the domain knowledge from the expert.

The system developer will not have the level of understanding of the
domain knowledge as the expert knowledge provider. Therefore it is essential
to create a standard method for acquiring the information the expert
wants to convey, and share information using this standard method of
communication. At the same time, the system developer must look at the
issues related to the user interface, so that the system is as easy to
use as possible.

The user of the expert system does not have the level of knowledge
about the domain as an expert, and will also be inexperienced in using
an expert system on computer.

This means that functions such as explanations about the expert knowledge,
help on using the system etc must be incorporated into the system.

It is possible to classify users of expert systems by the intended purpose
of use. The expert himself may use the system to aid his own work.
Non — experts will use the system acting as an expert. As a consequence
of this, the knowledge in the system must be able to cope with various
requests, such as offering the optimum solution for a problem, or providing
information for showing alternative solutions, or evaluating alternative
solutions etc. Consequently, the ways of presenting information will differ
depending on the user.

We can thus see that there is a need for many more functions in
an expert system than simply building a knowledge base and inference
engine. Furthermore, it is also desirable to include the following functions: 1)

a knowledge acquisition mechanism for efficiently acquiring knowledge

from the expert, 2) an explanatory mechanism for improving understanding
of the ways the user and expertize use the system and 3) a user interface
which makes the system easy to use.

We can summarize the stages of development of an expert system,

based on the issues raised above.

Planning stage

1) estimation of the development timescale
- estimate time for the creation of a prototype and correction
2) investigation of the aims of the user
« consultation and provision of information
+ hypothesis of use by expert and non — expert
3) establishment of a common framework for liaison with the expert
+ focus on the expert as the source of knowledge

Preparation stage

1) selection of knowledge representation mode
+ decide on method of collecting information
2) method of acquiring knowledge
+ extraction of facts and relationships
+ method of investigating actual and potential knowledge

Selection satage of development tools

1) selection of computer equipment

- selection of general — purpose or specialist computer
2) selection of computer language

« trade — off between ease of development and flexibility
3) investigation of inference method

- comparison of inference methods used by experts

Creation stage of development tools

1) creation of a specification for collecting knowledge
- ease of collection of knowledge
2) creation of a specification for correcting knowledge
» clarity of correction of knowledge
3) creation of a history log for correction of knowledge

I

Development stage

1) mechanism for acquiring knowledge
« design of input and output

2) creation of prototype model
+ start of extended model

3) explanatory mechanism
+ investigation of facts and rules

Correction and enhancement stage

1) rule diagram

+ interrogation of facts and rules
2) modularization of rules

+ interrogation of facts and rules

Figure 2

Points to be taken into account at each level of development of an expert
system

4. Comparison of the development of procedural systems and knowledge
systems

In this section the development techniques for building an expert system
which I have proposed will be compared with existing techniques for
developing a procedural system. The stages in developing a procedural
system are 1) system investigation 2) system analysis 3) system design
(basic design/detailed design) 4) steps for system control®.

(1) System investigation

System investigation involves carrying out an analysis of the target
domain, determining what procedures are to be carried out (and in what
order) and what problems are likely to arise. Design of a knowledge
based system is the same at this stage.

However, design of a knowledge system differs in that the actual task
to be carried out is not as clearly defined as the tasks which will be
handled by a procedural system. The computerization of procedures which
are in themself difficult to proceduralize is an unavoidable feature of
knowledge based systems. Therefore, when developing a knowledge system,
it is necessary to focus on how specialists solve problems without worrying
about each individual procedure. Also, in developing a procedural system
the emphasis is put on analysing the procedures of work which are currently
employed and in making clear the flow of functions and information.

However, in developing a knowledge system the objective is not to
create procedures but instead to describe and represent the actual knowledge
of the expert. This means that the structure of the knowledge itself must
be decide upon at this stage.

With a procedural system, for example a warehouse management system,
it is relatively easy to decide on a structure for the procedures and
functions of warehouse management, as the domain is limited and well
defined. But with a knowledge system it is rare for boundaries to be
fixed at the outset. Indeed the difference between the two types of system
is that the knowledge system preserves the ability to expand the boundaries

of the system.

(2) System analysis

With a procedural system a functional analysis is carried out and
the relationships between functions and information groups are determined.
With knowledge systems it is necessary to determine types of knowledge
used in the system. It is possible to regard at the items which are stored
in the knowledge base in the following way.

Real world facts are represented in the form of knowledge, meaning
that as the real world becomes more complicated the form of representing
it must also adapt to a more complicated form of representation. This
entails that the structure of the knowledge base must also change to
accommodate this increased complexity. However, if we look at interpreting
the real world in the form of predicate logic expressions then we can
describe it as follows”

1) define set D which is not empty

2) assign the value in D to the constants and variables contained

in logical expressions

3) the functions from Dn to D are assigned by the function symbols

of each n variable

4) the relationship defined in Dn by the function symbols of each

n variable predicate are assigned

5) true or false values are assigned in the logical expressions

With expert systems, the collection and storage of facts and the inferencing
which is based on rules uses this concept. Therefore verification is
carried out on the hypothesis to be verified according on truth/false
conditions, by creating a set of non — empty facts. The facts to be stored
in the expert system are collected once the framework for storing the
facts has been determined. However, it is important to start with a totally
open — ended framework as outlined above.

(3) System design
With either type of system this stage involves designing input and output
processes. However, with a knowledge system a lot of thought must be

put into the help system and user interface. There is also a major difference

in the design of files and processes.

In designing input processes for knowledge systems as the knowledge
is provided by an expert, it is necessary to design for the input of facts,
rules, and certainty. It is also necessary to design input procedures which
allow different forms of interrogation by the user.

With output processes, it is necessary to design output for displaying
inference results to the expert and user, separate display of rule tables
for checking by the expert, and separate help displays for the user.

With file design, the files in a procedural system are dependent on
the program, but with a knowledge system the knowledge base is designed
independently of the inference mechanism. Therefore file design is not
necessary with an expert system, except for the design of the physical
storage structure and the structure of the knowledge base itself. Put
another way, although file design in necessary it is not essential when
developing an expert system which simply adds knowledge to an existing
knowledge base.

Furthermore, with developing knowledge systems, if there is no development
of an inference mechanism then there is no process design stage.

(4) System control

There is no great difference in the computer processing involved at
the system control stage. The same cycle of programming > testing >
debugging until a completed system is reached is involved. However, with
a knowledge system the difference is that the ’completed’ system is really
no more than an intermediate system. Therefore it is necessary to have
a knowledge acquisition mechanism which allows for the correction of
knowledge, in place of the error lists, trace lists and dump prints which

are used in procedural systems.

Figure 3 shows the flow

< procedural system >

l

of development for each system

< knowledge based system >

programming

knowledge creation

program testing
(translation,/run)

I

program testing
(inference)

error list
trace list
dump list

User interaface
knowledge acquisition mechanism

debugging

|

updating “deletion knowledge

]

Figure 3 Comparison of system development

Table 1 gives the items to be implemented at each stage for both types

of systems

Table 1

Comparison of system development of procedural v knowledge systems

development systems

knowledge systems

Functional Analysis of Domain Determine Problems

Analysis Comparison of Different System | Comparison of Procedural System
Function Chart of Function — Information | Hearing

Analysis

System Design

File Design

Process Design

Design of Input
Design of Output

Design of Fact Table
Rule Relationship Table
Certainty Decision Chart
Goal Chart

System Creation

Program Creation

Knowledge Base Creation
(Inference Engine Creation)

5. Capturing of knowledge for designing a knowledge system

As described above, the major characteristic of an expert system is
that the programming and data are quite separate, unlike traditional
programming in a procedural system. Because the inference engine (the
program) exists independently of the knowledge base (the data), the
development of a knowledge base is normally carried out independently
from the development of the inference engine

Let us now look at the thinking behind the development of a knowledge
base. The knowledge held in the knowledge base of a production system
contains knowledge used as facts and knowledge used as rules which
express the relationships between the facts®. This is the same relationship,
between meaning and form, as can be found in the rules used in natural
language. If we look at this fact in terms of predicate language then
we need to establish several points from the outset.

The first is the definition of terms. Terms are constants, variables
and functions. Constants are concepts which refer to specific objects, for
example "Tokyo”. Variables are concepts which express arbitrary areas
in which specified objects can be placed, e.g. " City”. Functions express
the relationships between variables and constants, for example the function
"I am a teacher”. Functions are expressions in which defined terms are
linked together using function symbols to show the relationship between
the terms. Predicates are expressions in which fixed terms are linked

together using predicate symbols to show the declarations for each term.

Predicate logic expressions can be defined by the following three
conditions :
1) predicates are predicate logic expressions
2) if we take P, Q as predicate logic expressions then
P,PAQ,PVQ, P>Q, P2Q are predicate logic expressions the
symbols mean
~ is NOT, Ais AND, Vis OR, — is INCLUDES, 2 is IF and ONLY IF

3) if we take P (X) as a predicate logical expression then

(Vx)P (X),(dX)P(X) is a logical expression.

These type of expressions occur frequently when the system developer
carries out ~hearing” from the expert and are representative of the core
elements of the knowledge system. For example, if we take P to mean
” Japanese work hard” and Q to mean ”"Today is Saturday” then P means
” Japanese do not work hard”, PAQ means " Japanese work hard and today
is Saturday”, PV Q is "Japanese work hard or today is Saturday”, P —
Q 1is "If Japanese work hard then today is Saturday”, P2 Q is
"1t is Saturday only when Japanese work hard and it can only be Saturday

when Japanese work hard’.

Also, it is possible to perform a number of transformations on logical
expressions so that the same concept can be expressed in a different
way. For example P —Q can be expressed as P AQ. If P then Q expresses

the same meaning as if not P or Q.

However it is not the case that the transfer of knowledge is carried
out exclusively in this form, during hearing sessions between the expert
and the system developer. The everyday natural language which humans
use to communicate is far more flexible than this, meaning that the system
developer must convert natural language into predicate language.

Moreover, with natural conversation we interpret the meaning of utterances
using background knowledge, meaning that the knowledge in an expert
system is insufficient if it is based solely on what is said in conversations
between the expert and the developer. Therefore we must convert the
knowledge conveyed by natural language and not just the utterances,
into a fixed form using predicate language.

If we can perform this task using a strictly defined structure then
we can capture knowledge in a much better form as predicate language.
In order to achieve this, we need some form of specification, even if
it is in a rudimentary form, for carrying out these dialogues .

One problem which arises when building a knowledge base, is that

there are often cases where we need to think about the different ways
of expressing knowledge. For example, in the case of the word " Tokyo”
it is not always possible to decide on whether or not this is a constant
or variable simply by looking at the word ”"Tokyo” itself. If the word
Tokyo cannot be further split into more constituents then it will be
processed as a constant. However, we can see that the word " Tokyo”
also consists of Itabashi Ward, Musashino City and so on meaning that
it could be treated as a variable. It is up to the system developer to
decide on whether to treat such words as constants or variables when
he is carrying out "hearing” sessions with the expert.

A different kind of problem arises when referring to concepts such
as " consumer”. Here the decision has to be made as to whether it refers
to all consumers (V) or to an individual consumer (d). If it is decided
that it refers to all consumers then we can use it is a rule. If it refers
to all consumers then it can be used as a rule, but if it refers to a
specific consumer then it must be treated as knowledge about a fact
and other conditions have to be added.

Apart from these examples, there is the general problem associated
with natural language whereby there are utterances which are not true,
the subject or predicate are not clear and so on.

This can introduce complications in the knowledge building process,
in that 1) the uncertainty can be due to the expert expressing the concept
as an uncertain concept, or 2) it has not been conveyed clearly to the
system developer, or 3) the system developer himself is treating the concept

in an unclear way.

6. System development and design of expert systems

I will now set out in more detail the separate stages needed for developing
a knowledge system in order to resolve the problems mentioned so far.
Figure 4 shows the development steps for building a knowledge system.

The stages which are the same for a procedural system have been omitted.

Development Planning

I

Development Preparation

[

Functional Analysis

[

System Design

I

Create Fact Data

I

Create Rules Data

System Development

[

Create Certainty Data

[

Create Prototype

l

Run Prototype

Knowledge Correction

l

Run Extended System

]

Figure 4 Development steps or a knowledge system

6.1 Development planning and preparation

The first thing to consider at the planning stage is the issue of whether
or not the domain being looked at should be computerized at all, and
if the computerization can be handled by a procedural system. When
investigating whether or not to start the project, all of the problems
associated with the target domain should be made clear from the outset.
It is then normal procedure to decide on whether or not to carry out
the work using manual methods or computerization by looking at factors

such as costs, efficiency gains and ease of use. In this sense, the decisions

16 —

to be made at the planning stage are the same as for developing a procedural
system.

However, with a knowledge system it is extremely important to realize
that the final form of the system will still be unclear at this stage.
It is important to recognize that the necessity for computerizing the
target domain will be decided by the requirements of the user. Needless
to say, there are many types of expert system. One way of evaluating
computer systems is by how much time has been saved in performing
a given task. But with an expert system it is often the case that the
evaluation of an expert system will also take into account the demands
of the user as an expert system is used to aid the intellectual task of
an expert.

When it has been decided to computerize the target domain the next
stage is to decide on whether to use a procedural system or knowledge
system. The kind of problems for which knowledge systems are suited,
and for which a procedural system will have difficulties, are as follows:

1) problems for which the optimum solution cannot be determined

2) problems where the optimum solution is not required

3) problems where a large number of conditions must be included

in the processing making the procedure very complex

The decision to start developing a knowledge system should only be
taken after it has been decided that a procedural system cannot handle
the requirements of the target domain. If the decision to develop a
knowledge system is taken, then a critical condition for using a knowledge
system is that it can cope with the problems which the procedural system
cannot.

The next factor to take into account is the feasibility of whether
or not the knowledge of the expert can be structuralized. Knowledge
which is well defined and structured, such as legal or contractual language
is relatively easy to collect as actual knowledge, whereas knowledge which

is of a heavily creative nature, such as language used in design etc. is

hard to collect.

Finally, it is necessary to estimate the timescale and the labour/budgetary
costs. With an expert system it is essential to split this estimation into
the time for developing a prototype and the time for developing a completed
system. The reason for this is that the development of the final system

starts after the prototype model is finished.

6.2 Functional analysis

The main problem which occurs in the creation of an expert system
i1s how to acquire the domain knowledge from the expert. Many of the
expert systems we can see today are open to the criticism that they
are not really expert systems at all, because the domain knowledge of
the expert has not been fully included in the system. Therefore it is
essential to devote a sufficient amount of time to the issue of acquiring
knowledge from the expert.

The following points should be taken into account when planning how
to carry out the knowledge acquisition process :

1) what form should experiential knowledge take ,

2) how should potential knowledge be turned into actual knowledge

3) how should the knowledge be summarized

4) how should certainty be defined

The "hearing” stage begins with the system developer asking the
expert about the way the task is carried out, the different stages involved,
and the information used when carrying out the task. As there are usually
many variations in the ways a task can be carried out, it is generally
believed that there is no common specification chart which can be used
for the hearing process.

However, even though this is an intellectual activity, it still consists
of goals, information to support the task and some form of systematization,
meaning that we can create such a specification chart based on common
criteria. These criteria are the framework, problem solving method, supporting

information, final results of the task. These are shown in Figure 5.

Date

Specific Chart No. System name

Knowledge Provider Developer

Outline of Specialist Tasks

Case Study of Task

Task Items

Problems and Methods for Solution

Related Information

Results Expected by User

Figure 5 Basic Hearing Specification Chart

At the start of the hearing stage it is important not to ask for detailed
facts and solutions. Rather, it is important to make clear the range of
knowledge held by the expert by obtaining the different types of conscious

knowledge, keywords on potential knowledge, opinions on certainty etc.

Date

Specific Chart No. System name
Knowledge Provider Developer
Case No. Case Name

Case Outline

Unique Features of the Case

Solutions

Figure 6 Detailed Hearing Specification Chart

When gathering knowledge from the expert it is good practice to list
up several typical examples of the task and solve each one by looking
at the methods used.

Specific Chart No.

Date

System name

Knowledge Provider Developer
Case No. Case Name
Fact Table
Fact No. Entity No. Entity Predicate No. State or Action

< Method of Entering Data >

Fact No.: sequential numbers to distinguish facts
Entity No.: number to distinguish entities

Entity : main constituent of the state or action
Predicate No.: number to distinguish state or action
State or Action : explanation of the main constituent

Figure 7 Fact Enquiry Chart

The Fact Enquiry Chart is used for transforming facts, states and
actions into predicate forms. It can also be used with a Rule Enquiry
Chart to check whether or not there are facts which are not used by

the rules, or if there are missing descriptions for facts which are used

in rules etc.

The enquiry starts from actual knowledge about the specialist tasks

but may then move on to potential knowledge held by the expert as

a way of integrating the two types of data together.

Specific Chart No. System name

Knowledge Provider Developer

Number Condition Fact no. Conclusion Fact no.

RSP U UUp DE

Number : rule number

Condition : if...

Conclusion : ... then

Fact No.: fact number from the fact enquiry chart.

Figure 8 Rule Enquiry Chart

The Rule Enquiry Chart is used for listing the rules which link the
facts collected in the knowledge base, and takes expressions in a single
sentence form. However, as this is later converted into the form used
by the Rule Specification Chart for the input of knowledge, it is necessary
to make clear any multiple conditions in the condition — part of rules

in the Rule Enquiry Chart.

6.3 System design for a production system
As described above, there are many ways of representing knowledge
in an expert system. The focus in this section will be on a method of

design for a knowledge system which uses a production system as the

method of inference.

< Method of Designing Facts >

The Fact Design Chart is used for aiding the storage of facts. At
this stage the following are points should be kept in mind :

1) how should experiential knowledge which has been acquired using

the Fact Enquiry Chart be formalised

2) how the potential knowledge left over is to be actual

3) how to summarize the knowledge

As this Fact Design Chart will be used for the correction, deletion
and addition of facts after the prototype system has been created, it
is necessary to create this chart in a form which can be evaluated as

information for discriminating between individual facts.

Date

Specific Chart No. System name

Knowledge Provider Developer

Fact Table

Fact No. Content

Necessity

54321

54321

Fact No. : continuous numbers to discriminate between facts
Content : includes the fact and state/action
Necessity : 5 level evaluation
5 = 100 % necessary fact
3 = standard fact which is normally used
1 facts which are unlikely to be used

i

Figure 9 Fact Design Chart

< Method for Rule Design >

As with the Fact Design Chart, this method is used for systematizing

the rules decided on by the rule enquiry process. In particular, as it

uses a form of representation using nodes and arrows to show how the

rules are related it can also be used for aiding the correction and addition

of rules once the prototype system has been built. When interrogating

the rules there is a need to discriminate between conditions which can

be separated from other conditions, and those which cannot.

It is also necessary to define the certainty of each rule. The certainty

is a measurement of how to treat the level of certainty of that rule.

This specification chart can add a level of necessity as an aid for interrogating
the rule system. Certainty is one method of knowledge representation,

whereas level of necessity is a tool for analysing rules.

Date

Specific Chart No. System name

Knowledge Provider Developer

Fact Higher Order Fact Parallel Fact Lower Order Fact
T T T 1

No. i Content No. i Content No. E Content No. E Content

1 | l : |
1 |]]
1 | 1 1
i | i]
| | t]
{ 1 t]
i \ T :

2 | : :
| 1 | 1
| { 1 [}
| { [} [}
[}] | |
I ! | |
I H 1 T

3 l i : :
I I | i
1 I I H
I | |]
] I 1 t
! ! ! !
i] 1 1

4 | | : |
1 i 1 [}
i i]]
]] [}]
| t |]
| I |]

Number : fact number

Higher Order Fact: fact which is a condition of the relevant fact

Parallel Fact: fact which is conjoined by AND or OR with the relevant fact
Lower Order Fact: fact which is introduced by the relevant fact

Figure 10 Rule Design Chart

< Method for deciding on the Certainty >

As yet there is no generalized method for specifying the certainty
of rules in an expert system.

Here 1 propose a method of interrogating certainty using the concept
of ranking rules by certainty, together with the Delphi method.When specifying

the certainty for each rule, the value is no more than a subjective value

assigned by the individual expert. Because of this, there can be no objective
comparison with other rules or between different experts.

First of all, an ascending sort is performed on the condition — part
of the rules for rules with the same conditions. Then it is possible to
decide on the certainty according to that ranking.

This technique can also be used on rules which have the same condition
— part. Next, an effective method for correcting certainty is to compare
the decisions made by different experts. However as there is variation
in the decisions made by each expert, it is not possible to rigidly measure
certainty and so correction using Delphi method must be employed.

Figure 11 shows the chart for deciding on the certainty taking these

factors into account

Date
Specific Chart No. System name
Knowledge Provider Developer

Certainty Table

Rule No. Content Certainty

Rule No. : rule number
Content : description of rule
Certainty : +1 100 % positive
—1 = 100 % negative
0 = no certainty

Figure 11 Certainty Decision Chart

< Design of knowledge acquisition mechanism >

Firstly, it is necessary to design the initial input for gathering knowledge
from the expert and for correcting this knowledge once the prototype
is completed.

It is also desirable to create a method for displaying rule tables which
can be use to aid knowledge correction.
< Design of help system for the expert>

The help system for the expert should provide the following assistance :

1) explanation of the inferencing used to reach the final goal

2) display the next best inference results according to certainty

The first explanation will show how the conclusion (goal) was reached
and by what inference path. It is also used for making sure the inference
path is the same as the one used by the expert. The second explanation
is used for investigating the possibility of discovering better paths to
the goal, by correcting the certainty which was initially defined.
< Design of help system for the user >

The help system for the user should provide the following assistance :

1) explanation of basic vocabulary used in the system

2) a manual for using the system

3) explanation of reasons for displaying problems

4) explanation of inferences used in the rule conclusions

The first two help functions provide the user with supplementary
knowledge about the domain handled by the expert system and the structure
of the expert system itself.

The third help function provides explanations of the terminology which
appears in questions, and the aims of the questions which are presented.
The fourth help function provides explanations on the reasoning carried
out, although is not as detailed as the reasoning process of the expert.
The main function is to provide explanations on rules which are used
directly in deciding the final outcome of the goals and explaining why

those particular rules were used.

< Design of the user interface >

In the development of a expert system, it is essential to invest a
lot of effort on the user interface. There are many areas in which user
interfaces can be improved, and many ways of doing so, but it is especially
important to pay a lot of attention to the processes involved in correcting
the knowledge provided by the expert.

The reason for this is to make sure the thought processes of the expert
are not interrupted whilst knowledge correction is being carried out.

The operation of an expert system should be as smooth as possible,
from analyzing the knowledge map, to making clear any problems which
arise and building it as new knowledge.

In order to do this, links between windows on the screen should be
seamless and it should be easy to carry out parallel process. This kind
of interface requires an environment which supports multi — windowing

and multi — tasking.

6.4 Method of knowledge interrogation

The final issue in developing an expert system relates to program
debugging. The kind of program debugging which is carried out in a
procedural system cannot be carried out in the same way with an expert
system. The correction of logic errors in a procedural system, take the
form of correction of logic in the development of an expert system, this
correction occurring mid — way through the development process.

We can summarize the main issues related to logic correction in a
expert system as follows:

1) in what form should correction and addition of facts be carried

out ?

2) how should the logic flow be represented

3) how should the correction and addition of rules be carried out

4) how should the correction of certainty be carried out

50 how should the knowledge of the expert be extracted

Based on these five points, there are two methods of logic correction
which we can employ, the first using the Fact Relation Chart and the

second using Modularization.

Fact Relationship Chart

When correcting knowledge related to the facts acquired from the
expert to see if it is valid, the validity of the facts themselves are not
under scrutiny, rather the relationship between the facts and the rules
are what is looked at.

Therefore it is necessary to create a chart of the representations (rules)
of how the facts are linked together. For any given fact it is necessary
to make clear what items it contains as the condition — part (IF items/
superordinate items). Also, if the conditional — part is conditional on multiple
facts it is necessary to make clear what kind of multiple condition it
is. Furthermore if the condition itself is a complex condition it is necessary

to make that clear.

Figure 12 is a Fact Relationship Chart based on these points

Specific Chart No. System name
Knowledge Provider Developer
Fact No.

Fact Content

Superordinate Fact

() Loy Ty T
| o ()
! f . AND =
Parallel Facts
OR ()
Oy ey ().
i o m e r------ 0 L""‘, ()

Subordinate Facts

Figure 12 Fact Relationship Chart

Modularization

With modularization it is important that the information gained as
a result of the modularization is useful for rediscovering the knowledge
of the expert.

For example, in a case such as the one shown in Figure 13 where the
relationship between facts is represented in result arrays, it is possible
to classify the elements a b ¢ and d e f as different groups and make
them into modules. However, with an inferencing method where the level

of relationships between facts is evaluated as the certainty, even if the

relationship is tentative, there is the possibility that the facts will be

linked by the presence of a level of relationship between those facts.

< Result >
abcdef abc def
111000 a(lllyd (111
111000 = b{1ll]e |11l
111000 c\111) f (111
000111

000111
000111

Figure 13 Example of possibility for modularization

< Reason >

O QO T

With modularization it is necessary to build in a method which makes
it possible to arbitrarily cut the certainty at a certain level. In the example
in Figure 13 it is possible to modularize the relationship between the
rules even further if we use only those items which have a certainty

of over 0.5.

< Result > < Result >
a b ¢ d e f abcdef
a(0.80.60.90.30.40.5 a(l111001
b|0.70.91.00.40.20.0 b{111000
<Reason>c¢ [0.6 0.6 0.6 0.30.20.4| =& <Reason>c 111100
0.30.20.41.00.80.9 d{000111
e 0.40.40.20.80.90.5 el 000111
f {0.30.40.10.70.50.9 fLo000111
Figure 14 example of possibility for pseudo modularization (1)

If we leave out a specific fact, as in figure 15, it is necessary to build
in a facility for discovering facts which can be further broken down
into smaller modules, and provide a method for expressing the structure

of each module if we leave out that fact.

< Reason >

< Result > < Result >

abcdef abcdef
a (111000 a (111000
b | 111000 b | 111000
c| 111100 = < Reason> ¢ | 111000
d| 001111 d| 000111
e | 000111 e | 000111
f 1000111 f L000111

Figure 15 example of possibility for pseudo modularization (2)

If we use these results, we can systematize the relationship between

rules and facts using a structuralization technique employing ISM (Interpretive

Structural Modelling). These are effective methods for the formation of

expert knowledge.

7 I1SM procedure

ISM is a technique® proposed by Warfield of the American Battel Research

institute, which is used for structuralizing the elements which make up

a knowledge system. It is a powerful method for assisting the structuralization

of rules as will be shown below.
< ISM procedure >

1.
2.

extract the elements to be analysed

Perform relationship (in one direction) for each element

1 = there is a relationship 0 = there is no relationship
Represent the relationships as an array

Add 1 to the opposite element in the array < treat it as array A)
Ask for the product of the array <A x A > < take the value
of the product as A?>

End if A®? is equal to A, if not then calculate A? x A. < A*>
Repeat this procedure until A"= A"

Call the resulting matrix the reachable matrix

Extract the descendant element or ascendant element for each element
from the reachable matrix

Create a common set of the ascendant elements and descendant

element for each element

10. structuralize
1. In each element treat the ascendant elements and common elements
equally as a rank

2. Repeat the process deleting the parts which have been decided

upon as ranks
Figure 16 shows a family tree which will be used to explain ISM, with
figure 17 representing a family tree as an array, and figure 18 showing

a reachable matrix

Example) Family Tree

Grandfather
l
|] |
Father Uncle Aunt
l
I | l
Me Brorher 1 Brorher 2 Cousin

Figure 16 Family Tree

Grand Father Uncle Aunt Me Brother Brother Cousin
father 1 2

Grandfather (0
Father
Uncle

A' Aunt
Me
Brother 1
Brother 2
Cousin L

g

QO OOODOOO -
OO OO OOO—
OO OCOO —
OO OO O
OO OO O—O
OO O O
\OOOO'—‘OOO

OO O OO OO

Figure 17 Array Expression of a Family Tree

Grandfather |

Father
Uncle
Aunt
Me

AZ

Brother 1
Brother 2

Cousin

Grand Father Uncle Aunt Me Brother Brother Cousin

father

OO OO ODODODO —
OO OO OO
OO DODOOHO —

\

1

OO OO OO
OO O R OO
OO OOO K —

Figure 18 Reachabie Matrix of a Family Tree

O OO OO—— DN
—_ O OO OO —

Figures 19(1), 19(2), 19(3) are products of the reachable matrix shown

in Figure 18

Element

Descendant Element

Ascendant Element

Common Element

Grandfather
Father
Uncle

Aunt

Me

Blother 1
Blother 2
Cousin

[T e e e e)

e e ¢ & o [

DN DD DN W N
e e

o ~3 O Ul

1
2
3
4
5
6
7
8

23+4+5+6-7-8
*56-7

-8

CO ~3 O U1 &» W DN +—

Figure 19(1)

Elements of Reachable Matrix — Step 1

Element |Descendant Element Ascendant Element Common Element
Father 2 2567 2
Uncle 3 3 3
Aunt 4 448 4
Me 2+5 5 5
Blother 1 246 6 6
Blother 2 27 7 7
Cousin 48 8 8

Figure 19(2)

Elements of Reachable Matrix — Step 2

Element Descendant Element Ascendant Element Common Element

Me 5 5 5
Blother 1 6 6 6
Blother 2 7 7 7
Cousin 8 8 8

Figure 19(3) Elements of Reachable Matrix — Step 3

By using these steps it is possible to divide the elements into ranks
as shown in figure 20. It is also possible to recreate the first family
tree from the indirect relationships between the elements.
< Result >
First rank 1
Second rank 2 34
Third rank 5678
Figure 20 Ranking of Elements

By using these methods it is possible to recreate the whole family
tree from the indirect relationships between superordinate and subordinate
elements, using the Fact Relation Chart in Figure 16 even without the

original family tree.

7. Method for correcting knowledge

Here a specification for a knowledge system based on this development
procedure will be put forward . The use of a correction specification
such as the one which will be outlined below will have a significant
effect on the quality of the finished expert system.
< Correction of Facts >

Leaving aside corrections of careless mistakes in word usage, the correction
of facts after the prototype system is finished involves altering the definitions
of facts, actions and states. The following kinds of correction normally
take place:

1) cases where the same object can be represented by a different

expression

2) case where inclusive concepts and the concepts included I them

are used together

3) cases where there are facts not used by any rules

In any of these cases it is possible to find mistakes by using a truth

relation chart.

When building an expert system it is extremely important to keep
a log of corrections in the specification chart. It is also important to

list in detail the corrections and why they occurred and not simply

just the result of the correction.

Specific Chart No.

Date

System name

Knowledge Provider

Developer

Table of fact corrections & additions

Fact No.

Fact Content

No | Reason for Correction

Altered segment

Entity

Predicate

Entity

Predicate

Entity

Predicate

Entity

Predicate

Reason : reason for addition/change
Altered segment : new, altered, deleted segment

Figure 21

Specification for adding corrections to facts

< Correction of rules >

As with the Fact Relation Chart, it is extremely useful to represent

the structure of rules using graphical representations.

Specific Chart No. System name
Knowledge Provider Developer
Rule No.

Rule Content

Superordinate rules

Conditional section Conditional section Conditional section

Certainty () () ()
Current rule

Certainty () () ()

Conditional section Conditional section - Conditional section

Subordinate rules

Conditional section : Superordinate rules condition — part
Current rule : condition — part and conclusion — part
conclusion section : conclusion — part of the subordinate rules
Certainty : certainty of rules

Figure 22 Rule Structure Chart

By using the Fact Relationship Chart we can systematize how a given
fact is related to other facts using the rule descriptions as a guide. With
the Rule Relationship Chart we can show the the flow of reasoning,
i.e. the relationships between rules, and analyze the system using larger
units of analysis. This can also be used for exploring whether or not

links between the rules, as expressed in the inferencing processes in the

production system, represent the way of thinking of the expert. Displaying
groups of rules on three levels, can be very useful for analysing the

inferencing processes and subconscious knowledge of the expert.

Date

Specific Chart No. System name

Knowledge Provider Developer

Table of rule correction & additions

Rule no. Rule Content no. Reason for Altered segment
Correction

Conditional section

Conclusion section

Conditional section

Conclusion section

Conditional section

Conclusion section

Conditional section

Conclusion section

Reason for Correction : reason for addition/change
Altered segment : new, altered, deleted segment

Figure 23 Rule correction addition specification

In the rule correction addition specification it is necessary to describe
in detail the reason for the correction.
< Correction of Certainty >

The certainty used in an expert system is decided on subjectively
by the domain expeft and is therefore not validated by looking at each
rule. Therefore the stability of the certainty can be considered to be
low. As a result it generally arises that the initial settings designated

by the expert have to be adjusted.

When deciding on what to base the adjustments of the certainty on,
it is often the case that it is determined by the validity of results gained
from imposed conditions.

An expert system is not always use to discover the optimum solution
for a set of circumstances. On the contrary, there may be alternative
solutions which the expert regards as valid, and the conditions which
are used to bring out that solution are the knowledge of the expert.
Thus it is sufficient to be able to display information which will show
how to alter the certainty so as to arrive at the target solution.

In order to do this, one method is to enhance the decision making
process of the expert by displaying a large number of results gained
from simulations where the certainty has been adjusted. An effective system
will display the results for each case where the settings for the certainty
is changed in fixed stages from 0 to 1.

One problem faced when using this method is deciding which rules
to include in the simulation. It is not possible to answer this question
fully here but one method is to start the simulation using rules with
the highest relevance factor as described above. Again, it is important
to keep a log of the corrections made in this process, and to keep a

detailed record of the reasons why the corrections were made.

Date

Specific Chart No. System name

Knowledge Provider Developer

Table of Certainty

Rule No. rule Contents Reason for Alteration certainty

—>

Rule No. : rule number
Rule Contents: description of the rule
Certainty : +1 when 100 % positive, —1 when 100 % negative
0 when no certainty
when altered put figure before and after the —
when a new certainty is created put x before the = and a figure after

Figure 24 Specification for Correcting Certainty

8. Example System
The following is a partial example of an expert system which provides

decision making information on choosing different types of employment.

Table 2 Example fact table

< Facts >

1. Employment location < Tokyo area/place of birth/other > is preferable

2. Type of employment <Primary sector/secondary sector/tertiary sector >
is preferable

3. Size of company < Major corporation/medium sized company/either >

is preferable

A S L A o

10.

12.
13.

14.
15.
16.
17.

18.

19.
20.

Starting salary < high/either high or low > is preferable

Your personality < extroverted/introverted >

Aptitude < planning/desk work >

Hobbies < sports outdoor/reading indoor >

Work < general/specialized > is preferable

Track record < outstanding/ordinary/poor >

Physical strength < outstanding/ordinary >

Pleasant appearance < yes/no >

Previous employment experience < yes/no >

Periods of unemployment < none/up to one month/up to three months
/up to one year/greater than one year >

Special skills < baseball/rugby >

Recommended sector < secondary sector/tertiary sector > is best
Recommended type of employment < sales/office work > is best
Recommended type of work < focus on work/focus no time off >
is best

Recommended type of work < regular hours/free to choose time
of working > is best

Recommended form of testing < interview/paper test> is best
Company to aim for < company A/company B/company C/company

D/company E/company F/none >

Table 3 Example of rules
< Rules >

1.

If the area of employment is < Tokyo area > and track record is
< excellent > then company to aim for is company A

If size of company is < small —medium > and track record is <ordinary >
then company to aim for is company C/company d/company E
If the area of employment is < place of birth > and starting salary
is <high > then company to aim for is NONE

If the type of employment is < secondary sector > and area of

employment is < other > then company to aim for is company E

5. If the type of employment is < tertiary > and starting salary is

< either > and area of employment is < Tokyo > then company to

aim for is company A

< Example of database for company to aim for >

Company| Lo — Sector Size Starting Track Willingnes
name cation salary record
A Tokyo | Tertiary small/ medium Hight Important | Important
B Tokyo | Secondary | Large Ordinary Important | none
C Local Secondary | small/ medium Ordinary Important | none
D Local Tertiary small/ medium Ordinary none Important
E Other | Secondary | small/medium Hight non | none none
F Other | Primary small/ medium Ordinary none Important
Figure 25 Characteristics of each company
Applicant Company Company
Characteristics Characteristics name
Personality Size
Size
Ability Industry
Treatment/ conditions
Preferences Location
Type of employment

Figure 26 Structure of rules

9. Conclusion and discussion

This paper puts forward a system specification for developing a knowledge
system, based on the example of an expert system. The two major components
of this proposal are 1) a method of expressing facts and rules, and 2)
a method of analysis using knowledge system charts.

However, as there are many ways of representing knowledge there
are many questions which are still left unanswered to say whether or
not this is an effective method of system design. For example, with knowledge
systems using frame reasoning or blackboard methods, what are the common
areas of development in terms of developing knowledge systems. Also,
how should we deal with the areas of development which differ from
the development process put forward here. We must wait for further
results from research on knowledge representation. But, at the same time
we must experiment with constructing conceptual forms for knowledge
itself from the standpoint of developing practical and workable knowledge

systems.

Source of Reference
(1) S.M.Weiss,C.A.Kulikowski, [A Practical Guide to Designing Expert Systemd,
rowmon & allaheld,1982

(2) Yu Nanjyo, EDP sisutemu Sekkei nyumon, pub.ohmusya,1980
(3) Hidetoshi Takahasi, jyouhoukagaku no ayumi, pub.iwanami syoten, 1980
(

4) Setuo oosuga, detabesu to tisiki sisutemu, pub.ohmusya,1989
5) Frederick Hayes — Roth,[Building Expert SystemJ, Addison — Wesley,1983
6) Daisuke Miura, sisutemu no bunseki to sekkei(1), pub.ohmusya, 1973

(

(

(7) Haruki Ueno, tisiki kougaku nyumon,ohmusya,1985

(8) Masahisa honda,Tadatosi Yamaguti, Nobuhuko Seike, gyouseisi detabesu
no kaihatu, pub.gyouseijyouhou kenkyujyo, 1983

(9) Nobuhiko Seike, souzouseigihou handobukku, pub.bijinesuripoto,1981

