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Discoveries of the constructive model of the samll-world network by Watts and
Strogatz[22] in 1998, the real network with the scale-free network by Albert, Jeong
and Barabési[2] in 1999 and the generative model of the scale-free network by Barabdsi

and Albert[4] opened a new frontier in the network science, and their influences range
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from physics, mathematics to biology and sociology[3][10][19][18][20]. Their models
proposed/very simple procedures generating a network with the small-world and the
scale-free properties respectively. These specific properties are not visible by consid-
ering just only on each entry building the network but by observing the networks as
a whole statistically, therefore need the giant complex networks.

In this paper we examine the algebraic properties of rather small networks
generated by the Watts and Strogatz model(Sec.3.1) and the Barabéasi and Albert
model(Sec.3.2). Actually one of the main problems of algebraic graph theory is
to analize algebraic structure of the networks for which their topological prop-
erties must be reflected[23][9][7]. The above pioneer works stimulate extensive
studies for the statistics on the algebraic structures, in numerically[13][15] and in
theoretically[12][17]. However in cases of small size networks where the asymptotic
statistics or the theory of random graph are not applicable, the properties of this
kind of networks are still less well known.

2 A little matrix theory of graph

The adjacency and the Laplacian matrices are both naturally associated with a
graph. The relationship between the algebraic properties of these matrices and the
usual properties of the graph have been studied extensively[7}[8][9][23], and it is well
known that in general the connectivity cannot be determined from the eigenvalues
alone, and also from the eigenvalue of a graph, the diameter and the degree sequence
of a graph cannot be determined. We summarize below some of the known facts in

the matrix theory concerning our numerical experiments.

2.1 Graph

A graph G is a pair of a sets (V, E), where V = {v1,v,...,v,} is a set of vertices
in the graph and F = {ej,ea,...,en} a set of pairs of vertices called edges. The
number of vertices n = |V| in a graph is called an order of the graph, sometimes
simply denoted by |G|, and the number of edges s = |E| a size of the graph.

A graph with edges without orientations, which we mainly consider in this paper,
is called an undirected graph or simply a graph, where an edge between vertices u and
w is denoted by an unordered pair {v, w} or simply vw, saying that this edge joins v
and w and that it is incident with v and w. Two edges are adjacent if they have a
vertex in common. In this case, vertices v and w are adjacent each other. A graph
with edges with orientations is called a digraph, where an edge joining vertices from v



to w is denoted by a ordered pair (v, w) or simply vw, giving the edge an orientation
vw. In this case, the vertex v is adjacent to w, but w not adjacent to v.

Edges joining vertices to themselves are called loops. A multigraph is the graph
with multiple edges, meaning two vertices are joined by more than one edge, while a
simple graph is a graph with no loops where each edge has multiplicity at most one.
The set of vertices adjacent to a vertex v in G, the neighbourhood of v, is denoted by
I'c(v). The number of the neighbourhood I'¢(v) of v is called its degree or valency,
denoted by degq(v;) = |T'g(v)|. A graph G is k-regular, if every vertex of G has the
same degree equal to k.

A walk in a graph is an alternating sequence of vertices and edges, say
Vigy €iys Vigs -+ -5 €, Vi, , i which each edge e;, = wv;,_,v;. The walk going
from v;, to v;,, is often shortened to v;,v;, ...v;,,. Its length is m, the number of
occurrences of edges in v;,-v;,  walk. A walk in which no vertex is repeated is called
a path. A cycle of length £ in a graph is a walk (v;,,v;,,...,v;,) With v, = v;,,
£ # 0 and v;,,...,v;, all distinct. The distance between two vertices v and w in G
is defined by the minimal length of a path from v to w, denoted by dg(v,w). The
mean path length or characteristic path length is an average of dg(v, w) over any pair
of vertices v and w in G. Then the maximum distance between two any vertices in a
graph diam G = max, weq dg(v, w) is called the diameter of the graph G. A graph
(V, E) is connected if V # () and there exists a walk between any two distinct vertices
of V. A tree is a connected graph without cycles.

If G and H are graph with V(H) C V(Q) and E(H) C E(G), the H is a subgraph of
G. H is an induced subgraph of G if E(H) contains all edges from E(G) with endpoints
in V(H). A spanning tree of a connected graph (V, E) is a subgraph (V', E’) with
V! =V, which is a tree. ,

The clustering coefficient C(G) or the network transitivity of a graph G is important
in the theory of social networks[21] and defined by

number of pairs of vertices ab, ac of adjacent edges for which bc is an edge

C(@) =

number of pairs ab, ac of adjacent edges
6 X number of triangles in G

number of paths of length two in G’

where a path refers to a distinct path starting from a specifies vertex[18][11].



2.2 Adjacency matrix

The adjacency matrix Ag = (A;;) of the graph G with vertices {v1,v2,...,vn} is
n X n matrix, whose (4, j) entry is defined by

A;; = the number of edges beginning at v; and ending at v,.

Since there exist an one to one correspondence between the graph G and its adjacency
matrix A, therefore studying properties of the graph G is in principle reduced to
consider its adjacency matrix Ag. Different graphs on the same vertex set have
different adjacency matrices, even if they are isomoriphic. If graphs G, and G5 are
isomorphic, then their adjacency matrices Ag, and Ag, are similar and we identify

G with G4 in a following sense.

Lemma 1 ([14]). Let G1 and G2 be graphs on the same vertex set. Then they are
isomorphic if and only if there is a permutation matriz P such that PTAg, P = Ag,.

The characteristic polynomial of a matrix A¢g is the polynomial
d(Ag,z) = det(z] — Ag),

and let ¢(G, ) denote the characteristic polynomial of Ag, where I is the identity
matrix with order n. The spectrum of a matrix is the list of its eigenvalue together
with their multiplicities. Lemma 1 shows that ¢(G1,z) = ¢(Ga, z) if G; and G4 are
isomorphic, and the spectrum is an invariant of the isomorphism class of a graph.

The eigenvalues of a graph G are the eigenvalues of its adjacency matrix Ag. The
spectrum of a graph G is a set of eigenvalues with their multiplicities. Two graphs
are cospectral whenever they have the same spectrum. So a graph G is in general
not determined by its spectrum alone, but determined by its spectrum only if every
graph cospectral with G is isomorphic to G. Table 1 shows several spectrums of
special graphs.



graph type eigenvalues respective multiplicities

complete K, n—1,-1 1,n—1
complete bipartite K, s /78,0, —/Ts 1,r+s—-2,1
2,1,...,1,2 f
cycle Cp, 2cos (22) k=1,...,n » e b dob T eVen
n 1,1,...,1,2 for n odd
path P, 2cos(nk—L),k=1,...,n 1,1,...,1

Table. 1 Spectrums of graphs K,, K, s, Cn and P,.

The spectral radius p(A) of a matrix A is the maximum of the moduli of its eigenval-
ues. Remark that the spectral radius need not be an eigenvalue of it. The entries A;;
of the adjacency matrix, are all non-negative, so we can apply the Perron-Frobenius
theorem to the adjacency matrix Ag.

Theorem 2 (Perron-Frobenius). Suppose A is a real irreducible non-negative n xn

matriz. Then we have a), b) and c¢) below:

a) p(A) is a mazximal eigenvalues Aoz of A, and all entries of its eigenvector for
Qmasz are non-zero with same sign.

b) Qmas s simple, i.e., multiplicity 1.

¢) For any non-negative n X n matriz B such that A— B is non-nnegative, p(B) <
p(A), with equality if and only if B = A.

The type of the adjacency matrix Ag depends on different variation of the graph
G. Ag is symmetric in case of the unordered graph, while possibly asymmetric in
case of the digraph. If G is a multigraph, then Ag is a non-negative integer matrix
with zero on the diagonal. If loops are permitted, then Ag is a general non-negative
integer matrix. The simple graph, meaning that it is loop-free and a pair of vertices
are joined by at most one edge, has a (0,1)-matrix Ag with zero on the diagonal. If
the graph is unordered and simple, then Ag is a symmetric (0,1)-matrix with zero on
the diagonal. We consider hereafter unordered and possibly simple graphs.

We have a following corollary for an undirected graph or a symmetric non-negative
matrix Ag, which is a direct consequence of the Perron-Frobenius theorem.

Corollary 3. Let G be a undirected graph, then then Ag has n real eigenvalues
Omar =01 > 0 > ... > Qp = amm where oy is simple and || < ay fori=2...,n,
and a corresponding orthnormal set of eigenvectors by which Ag is diagonalized to
diag(aq, a2, ..., an).
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Next theorem indicate a relation focused on eigenvalues between a graph and its

induced subgraph.

Theorem 4 (Interlacing theorem|[7][14]). Let H is an induced subgraph of G. If
m > n2... > N are the eigenvalues of H, and if cn > a2 > ... > a, are the
eigenvalues of G, then

Qian—t <M <oy, fori=1,2,... L
The eigenvalues of the symmetric matrix A have a relation to its Rayleigh quotient

R(A;x), which is defined using the inner product for any non-zero vector x as

(x, Ax)

R(a;x) = @)

Indeed, for the adjacency matrix Ag of the undirected graph G the Rayleigh quotient
has a value within the range from the smallest to the largest eigenvalues.

Theorem 5. Let G be an undirected grapg with adjacency matric Ag and with
eigenvalues Qmae = 011 > Q2 > ... Qy = Omin- Then R(Ag,x) takes on precisely the
values in the interval [a1, a,]. In addition, R(Ag, &) = Qmaz OT Omin only if T is a

corresponding eigenvector.

Corollary 6. If H is a proper induced subgraph of ¢ connected undirected graph G,
if H has mazimum eigenvalue Ny,q, and minimum eigenvalue Nyin, if G has mazimum

eigenvalue g,y and minimum eigenvalue Qumin, then tmin < Mmin < Mmaz < Omaz-

| Corollary 7. If e is an edge of a connected undirected graph G, then the largest
eigenvalue of G is strictly greater than the largest eigenvalue of G\e.

By considering the values of entries (Ax);/x;(i = 1,2,...n) for a vector with non-
negative entries, the largest eigenvalue ., of A satisfies

J x; ( Z;

Then taking the all-1 vector j = (1,1,...,1)* as above  and A¢ for an undirected
graph G with degrees di,ds,...,d,, we obtain

mind; < Qpay < maxd;.
(] (3

Thus using Theorem 5 with the vector j, this results the following theorem saying
that the maximum eigenvalue lies between the average degree §(G) = 1 37 | d; and
the mazimum degree A(G) = max;d; of the graph G, and equals both value iff the

graph is regular.



Theorem 8. If G is an undirected graph with degrees dy,ds,...,d, and mazimum
eigenvalue Qpqy, then

(@) < amas < A(G).

Equality is attained if and only if the graph is regular.
Moreover we have

Theorem 9 ([23]). Let G = (V, E) be a graph with order n = |V| and size s = |E|

and mazimum eigenvalue Cunqr. Then

(1)

2s 2s(s—1)

- S Omax S - -

n n |
The left equality is attained if and only if the graph is regular and the right
quality attained if and only if the graph is the perfect graph K, .

(2)
1 1
; Z \/d,‘dj < Omaz < IIlza,Xa—z XJ: \/didj

all .5 a0
ij

The most fundamental relationship between the eigenvalues of a graph and its
geometrical properties concerns walks.

Theorem 10. Suppose Ag is the adjacency matriz of G, then for k = 0,1,...)
i,5)-entry A%;: of AL, = AgoAgo...0 Ag is the number of v;-v; walks of length
Gij N ’, J

ktimes

k.

Theorem 11 ([7]). If a graph G has the diameter diam(G) and t distinct eigen-
values, then

diam(G) <t-—1.

Thus we have a following elementary theorem.

Theorem 12 ([7]). Let Ag be the adjacency matriz of a graph G with degree
sequence degq(v1),degq(v2), ..., dega(vn). Then we have

(a) degg(vi) = A%ii;



(b) the sum of the degrees of G is even, and ezactly twice the number of edges
> degg(v:) = 2B(G)] = trA;
i=1

(c) the number of triangles in G is ;trA%;
(d) the number of 4-cycles in G is % (trA‘é + trAQG -2 Z?:l AéiiAQGii);
(e) the number of 5-cyles in G is 15 (trAL + 5trA% — 557" | AZ;A%y).

Corollary 13. The clustering coefficient C(G) defined in Sec.2.1 is given by

trA3
C(G)= =——G .
@ D inj Ay

2.3 Laplacian matrix

Let G be a simple graph with adjacency matrix Ag.  Suppose Dg be
diag(dig(v1), dig(vs), ...,dig(v,)), the diagonal matrix with the degrees of G
on the diagonal (with the same vertex ordering as in Ag). Then the Laplacian matriz
L¢ or simply Laplacian of G is defined by

Lg = D¢ — Ag.

The Laplacian eigenvalues of a simple graph G are the eigenvalues of the Laplacian
matrix Lg. Define the n x s oriented incidence matrizr Q¢ with rows and colums
indexed by V and E of G = (V, E) whose adjacency matrix is A, whre n = |V| and
s = |E|, by

Auw if v is the initial vertex of e = vw,
(Rc)v,e = —Ayw if v is the terminal vertex of e = vw,

0 v and e are not incident or e is loop.

Then we can directly verify the following thorem.

Theorem 14. Let G be a graph, and let Qg be an oriented incident matriz with
respect to the orientation of its edges. Then

Le = QcQk.

Theorem 14 shows taht the Laplacian matrix Lg of the graph is independent of the

orientation of the graph.



The complexity of graph or tree number is defined by a number of the spanning
trees of G. For any matrix M with rows and columns indexed by the set 2 = {w}, let
M |w] denote the submatrix of M obtained by deleting the row and column indexed
by element w of 2.

Theorem 15 (Matrix-tree threorem|8][7][9][14][23]). Let G be a graph and let Lg
be its Laplacian matriz. If v is an arbitrary vertex of G, then det Lg[v] is common
and equal to the complezity of the graph, i.e., the number of spanning trees of G.

Corollary 16 ([14][23]). The number of spanning trees of K,, is n™ 2.

The matric Lg acts on RY as a linear operator, where RV = {f : V — R} be the
set of functions from V to R, denote by f, the value of f at the vertex v. Then
(f, Laf) is a natural quadratic form associated with L.

Theorem 17. Let Ag be an adjacency matrix and Lg be a Laplacian matriz of G.
Then

(f,Laf) = > Acww(f, — fu)*

vwek

By the definition Lg is a real symmetric, and Theorem 17 implies it is positive
semi-definite. Therefore there exist n non-negative real eigenvalues of L¢, called the
Laplace eigenvalues of the graph GG, denoting them in non-decreasing order

0=XA < X<... <\ = Anaz,

where ); is the ith smallest eigenvalué and remark that 0 = \; is always an eigenvalue
of Lg and j = (1,1,...,1)! is a corresponding eigenvector.
The next theorem says that the graph G is connected if and only if A; = 0 is simple.

Theorem 18 ([7]). The multiplicity of 0 as an eigenvalue of Lg is equal to the
number of connected components of G.

Using the Rayleigh quotient R(Lg, x), the kth smallest eigenvalue A\ is character-
ized by the Courant-Fisher min-max formula[7]

Ak = mUinm:%x{R(Lg,m) cx €RY, (x,x) = 1},
where the minimum is taken over all k-dimensional subspace U of RV, or

A = min{R(Lg,2) : (z,2) = L,z L 2,1 <i <k},



where x!, 22, ..., x*"! are pairwise orthogonal eigenvectors of A1, Aa, ..., A\k_1, espa-

cially
X2 = min{R(Lg, ) : (z,z) =1,z L j},
which yields the following results[7].

Lemma 19. For any non-adjacent vertices q and r in a graph G,

Yo < 5 (degiq) + degg(r)).

Theorem 20. For any graph G = (V,E) of order n = |V|,

0 I(G) and n

Ao <
2"n—l n—

1A(G) S )‘ma:t S 2A(G)7

where §(Q) is the average degree and A(G) the mazimum degree of G. If G is simple,

the last inequality can be strengthened to Apmay < max{degq,(v)+degg(w) : vw € E}.
We have an another version of the Matrix-tree Theorem(Theorem 15).

Theorem 21 ([14]). Let G = (V,E) be a graph on n = |V| vertices, and
A1, A2,... A\, be the eigenvalues of the Laplacian Lg of G. Thus the number of

. . . 11N
spanning tree in G is Hi:2 i

3 Small-world and Scale-free networks

The network is considered mathematically as the graph. We summarize here the
basic properties of the small-world and the scale-free networks.

3.1 Small-world network

The small-world networks means casually that there is a relatively short path be-
tween any two vertices in despite of their huge order of the graph. This small-world
effect often characterizes the complex networks[1][18]. To define this precisely, con-
sider a connected undirected network for sake of simplicity. The mean path length
(dg) between vertex pairs in the graph G is given by

da) = 3 d(vs, vy),

1
sn(n—1) =

where d(v;,v;) is the distance from vertex v; to vertex v;. Then we say that the
networks has the small-world property if the value of (dg) scales logarithmically or
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slower with the order n of the graph with fixed mean degree, that is,
(dg) ~ logn.

This logarithmic scaling of the mean path length can be proved for a variety of network
models, including the Erdos-Rényi random graphs[9] which are however not scale-free.

P

<<

Fig. 1 From [18, Fig.11]. (a) A symmetric k-regular graph(k is even) with
edges between all vertex pairs separated by k/2 or fewer distance spacing, with
k = 6 in this case. (b) The small-world model[22] is created by choosing at
random a fraction p of the edges in the graph and moving one end of each to

a new location, also chosen uniformly at random.

The small-world network attracted widely attention when Watts and Strogatz
showed by the computer simulation that a network which originally does not have the
samll-world effect can drastically become to be small-world even if very slight random-
ness modifies the network[22]. They proposed a one-parameter model constructing
the small-world network changing from a completely ordered finite dimensional lat-
tice to a fully random graph, starting from the symmmetric k-regular graph(k > 4 is
even) with edges between all vertex pairs separated by k/2 or fewer distance spacing.
Fig.1(a) indicates this symmetric 6-regular graph with 24 vertices is realized on a ring
in which every vertex is joined to its first 3 neighbor on either side.

The algorithm constructing the small-world network, which hereafter we call the
Watts and Strogatz(WS) model, is the following[22][1, VI.A][18, VI]:

1. Start with order: Start with the symmetric k-regular graph with n vertices,
which has kn/2 edges(Fig.1(a)). Suppose N > klogn > 1 to consider a
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connected sparse graph.

2. Randomly rewiring: With probability p by randomly taking small fraction of
the edges in the graph rewire those pkn/2 edges as shortcuts such that
2-1 moving randomly chosen one end of each taken edge

2-2 to a new vertex chosen uniformly at random from the lattice(Fig.1(b)).

A graph WSy, (n, k) created by above procedure allows to interpolate between a regular
lattice and a random graph. In fact, when p = 0, the mean path length (dw s, (n,k))
tends to n/2k for large n, half of the diameter diamW Sy(n, k), showing no small-
world property. When p = 1, the rewired graph becomes almost a random graph,
with typical mean path length on the oder of logn/logk, showing the small-world
property. Watts and Strogatz discovered by numerical simulation that there is a p-

region in which clustering is high and mean distance simultaneously low as shown in

Fig.2.

1 T T T

== —-LJ_I-Lq T

—— mean distance <d(p)>
---- clustering coefficient C(p)

0.5

<d(p)>/<d(0)>

O 1||||||| 1 ||||||

T T T 11717 T

T T T TTTT]

NCEVCO)

.

0.001 0.01

rewiring probability p

0.1 1

Fig. 2 From [22, Figure 2]. The relative clustering coeflicient C(p)/C(0) and
the relative mean distances (d(p))/(d(0)) in the small-world model WS, (n, k)
of Watts and Strogatz as a function of the rewiring probability p, in case of
n = 1000 and k = 10. Between the extremes p = 0 and p = 1, there is a region

in which clustering is high and mean vertex—vertex distance is simultaneously

low.
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3.2 Scale-free network

Let p(k) be the fraction of vertices in the graph that have degree k, then p(k) is
the probability that a vertex chosen uniformly at random has degree k. Then the
histogram {p(k)} is the degree distribution for the graph. In an Erdés-Rényi random
graph Ggg, each edge joining any chosen pair of vertices is present or absent with
equal probability p and 1—p respectively. Hence in the random graph with N vertices
and a joining probability p, the probability that a vertex v; has deg(v;) = k follows
the binomial distribution

p(k) = n—1Cxp™(1 — p)N 1%,

for a finite case, or the Poisson distribution

—l/Vk

k!

e

p(k) ~

for an inifinite case, where the average degree v = (N — 1)p = (k)gr. However in
many of real world networks the degree distributions follow rather

p(k) ~ e 7,

the power-law distributions with some constant =y, as shown in Fig.3. Networks with
this power-law distribution are referred to as scale-free networks, now attracting much
attention[2][10][18].
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k+1 k+1

10° 10° 10t 10° 10°
N

Fig. 3 From [2, Fig.1]. Distribution of links on the World-Wide Web. (a)
Outgoing links (URLs found on an HTML document). (b) Incoming links
(URLs pointing to a certain HTML document). Data were obtained from the
complete map of the nd.edu domain. Dotted lines represent analytical fits used
as input distributions in constructing the topological model of the web; the tail
of the distributions follows P(k) ~ k™7, with yout = 2.45 and v = 2.1. (c)
Average of the shortest path between two documents as a function of system
size, as predicted by the model. The measured (dnd.edu) = 11.2 agrees well
with the prediction (dsy105) = 11.6 obtained from our model.

One of the widely accepted models for the scale-free networks was proposed by
Barabési and Albert[4], who gave it as an evolution of the network. The algorithm
of their construction, which we hereafter call the Barabési and Albert(BA) model, is

14



the preferential attachment procedure below:

1. Growth: Starting with the cofnplete graph K,,0 with a small number mg. At
every step add a new vertex with m(< myp) edges joining m different vertices
already presented in the growing graph, which are chosen preferentially as fol-
lows.

2. Preferential attachment: When choosing the vertices to which the new vertex
joins, we assume that the probability II(v;) which a new vertex will be joined
to the vertex v; depends on the degree of v;, say deg(v;) = k;, such that

k;
-~

After T steps, this procedure generates a network denoted by BA(T, mg, m) with N =

H(’Uz) =

mg + T vertices and mT edges. Remarkably it is proven that this simply constructed
evolutive network grows up to the scale invariant network with the probability that a
vertex has k edges obeying the power-law p(k) ~ e~ 784 of an exponent yp4 = 3 [5],
independently on the parameter mg or m. This fact that the scale-free network has
the exponent as an universal constant opens a new frontier which has been studied
from the statistical physic and the random analyses|[1].

The small-world network constructed by the Watts and Strogatz model does not
have this scale-free property[6], so remark that the small-world property does not

mean necessarily the scale-freeness.

3.3 Spectral densities

The spectral densities for the Watts and Strogatz and the Barabasi and Albert
models were studied numerically by Farkas et al.[13] and Goh et al.[15]. Especially
the spectrum of the networks with the power-law degree distribution attracts much
attentions[12][17].

The spectral density p()\) of a graph G = (V, E) is the density of the eigenvalues
{Ai} of its adjacency matrix. For a finite graph, the spectral density is defined as

1 N
P =5 28—,

which converges to a continuous function with the number of vertices N — oco.
If A is a real symmetric N x N matrix with averages (4;;) = 0 and variances
(Agj) = o2 for every i # j, and with increasing N each momenta of each |A;;]

15



remains finite, then in the limit N — oo the spectral density of A/ VN converges to
the semi-circlur distribution[16]:

o) = { (210%)~ WA — X2 if |\| < 20,
o

otherwise,

which is known as Wigner’s law. The spectral densities of the infinite Erdos-Rényi
random graphs is therefore this semi-circle type.

However the semi-circle spectral density is not  necessarily valid for the realistic
networks. In fact, the careful numerical simulation on the BA model indicate that
the bulk of the spectral density of the scale-free model has rather a triangle-like shape
with top lying well above the semi-circle(Fig.4 and Fig.5).

3.3.1 Small-world network

The spectral densities p(a) of the WS model is reported to depend on the rewiring
probability p [13]. For p = 0 the network is highly regular, so p()\) contains numerous
singularities(Fig.4a). As p increases, the network is perturbed. These singularities
become blurred and are transformed into high local maxima, but p()) retains a strong
skewness(Fig.4b,c) meaning that the local structure of the network is still relatively
ordered, however already a very small number of rewirings can drastically change the
network’s global structure.

In p = 1 the WS model becomes very similar to the uncorrelated random graph.
The only difference is that in the random graph the degree of a vertex can be any
non-negative number, whereas in the WS model the minimum degree of any vertex is
a positive constant k/2. p()) of the WS model becomes a semicircle for p = 1(Fig.4d).
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(a)

S = N W

1.2

pVNp(1-p)

0.8 | () o9} (d)
0.6

. o WE— ) S S S
2 0 2 4 6 8 20 2 4 6 8
ANNp(1-p)

Fig. 4 After Farkas et al.[13]. Rescaled spectral densities of Watts and Stro-
gatz’s small-world model using the complete spectra. The solid line shows
the semi-circular distribution for comparison. (a) Spectral density of the sym-
metric k-regular graph created from the WS model with p = 0, k = 10 and
N = 1000. (b) For p=0.01, the average spectral density contains sharp max-
ima, which are the ‘blurred’ remnants of the singularities of the p-0 case.
Topologically, this means, that the graph is still almost regular, but it con-
tains a small number of impurities. In other words, after a small perturbation,
the system is no more degenerate. (c) The average spectral density for the
p = 0.3 shows that the third moment of p(\) is preserved even for very high
values of p, where there is already no sign of any blurred singularity (i.e., reg-
ular structure). This means, that even though all remaining regular islands
have been destroyed already, triangles are still dominant. (d) If p, = 1, then
the spectral density converges to a semi-circle.
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3.3.2 Scale-free network

Farkas et al. and Goh et al. found numerically that the Barabéasi and Albert scale-
free model does not show the semi-circle spectral density[13]|[15]. Their numerical
simulation indicate that the bulk of p(\) has a triangle-like shape with top lying well
above the semi-circle and edges decaying as a power-law(Fig.5). This power-law decay
is due to the eigenvectors localized on the highest degree vertecies.

As in the case of the uncorrelated random graph and unlike the SW small-world
model, the largest eigenvalue Ao is separated from the bulk of the spectrum
and increases approximately as N/4. Recently Chung et al. obtain a theorem[12]
which says that the largest eigenvalue is almost surely Amaz = (1 + 0(1))Vdmax
if /dmaz > dlog® N, where dpq, is the maximum degree among the degrees
of vertices di,ds,...,dn and d is the second order average degree defined by
d=YN d/ vazl di. In a scale-free network the fraction of loops with more than
four edges increases with N and their growth rate increases with the size of the loop.

1.2 —

1 +

08

0.6

pVNp(1-p)

0.2

-4 -2 0 2 4 6

MNNp(1-p)

Fig. 5 After Farkas et al.[13]. Rescaled average spectral densities of the
Barabasi and Albert scale-free model with m = mo = 5, and the number
of vertices N = 100 (—), N = 1000 (- —) and N = 7000 (- - -) vertices. The
semi-circle law corresponding to random graphs is drawn for comparison. The
isolated peak corresponds to the largest eigenvalue, which increases as N 1/4,
Observe that (i) the central part of the scale-free graph’s spectral density
is triangle-like, not semi-circular and (ii) the edges show a power-law decay,
whereas the the semi-circular distribution’s edges decay exponentially,i.e., it
decays exponentially at the edges.
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4 Numerical experiments

To explore properties of the the ‘small-world’ and ‘scale-free’ network with rela-
tively small vertices, we perform numerical experiments using the Watts and Stro-
gatz(WS) model and the Barabasi and Albert(BA) model with around 300 vertices,
much smaller than the numbers used in [13][15]. All calculations are executed by
Mathematica 5.1. ‘

We compute the eigenvalues of the matrices by using simply the Mathematica’s
built-in function Eigenvalues| ] in addition to numerical value function N[ ], so their
values is only approximative and furthermore more numerical errors might produce
non-negligible effects for more large matrices. In general, computing numerically
the correct eigenvalues of giant graphs is quite expensive and so requires a lot of
the computer resources in both the memory space and the CPU time and careful
- algorithms to find the eigenvalues precisely.

For computation of the spectral density, we compute here the eigenvalue distribution
of a graph G on the interval I = [émm, Emax] by counting number of eigenvalues {E,}
valued in the i-th interval I;(i = 1,2... K) with a same width Al = %(Emax — Emin),
where gmin and Emax are numerically computed minimal and the maximal eigenvalues
of the adjacency and/or Laplacian matrix of G respectively, UX I, = I, and the
diving number K is chosen appropriately to determine the accuracy of the eigenvalue
distribution on I for which we verified their shape by changing K. We should
remember nevertheless that the numerical errors due to the floating point computing
-might cause some serious effects even for this approximate eigenvalue distributions.

The numerical experiments below indicate that even small-size networks show spe-
cific properties which the small-world and/or scale-free networks typically have. How-
ever specifically in case of the spectral properties for which enough size of the matrices
and careful calculations of the eigenvalues should be required, we have to be aware of
difficulty to say anything about for the small-size networks.

4.1 Watts and Strogatz model

4.1.1 Degree distributions

The Watts and Strogatz model W.S,(n, k) with non-zero p indicate Poisson-like
degree distributions even for relative small n(see Fig.6).

In a case of p = 0, every vertex of the WS model have same degree k. The degree
distribution of the WS model drastically changes to the Poisson types onece p becomes
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non-zero. The degree distributions of the WS model for any non-zero p have the same

type of shapes.

(a) (b)
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Fig. 6 The log-log-scaled degree distribution of the Watts and Strogatz model
WS,(300,4). The distributions are the Poisson type, quite different from cases
of the Barabdsi and Albert model(cf. Fig.12). When p = 0, all vertices have
same degree k = 4 and so the degree distribution is simple. (a) The degree
distribution drastically changes to the Poisson type as long as non-zero. In
this case, p = 0.1. The shapes of the distribution are basically same for any
non-zero p. (b) p=0.5. (c) p=1.0.

4.1.2 The complexity

The complexity of a graph defined in Theorem 15 is one of the measures for the
farness apart from tree and the amount of freedom allowing different spanning trees.
The complexities of the Watts and Strogatz model WSy (n, k) grows rapidly from the
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complete regular graph at p = 0, but saturate before the fully random rewiring graph
at p = 1(see Fig.7).

There is a regin of p in which the complexity is high and the mean path length is si-
multaneously low. We remark that the non-monotonical behavior of the complexities
as a function of p is newly discovered here and require further studies on the topo-
logical or algebraic structure of the WS model, because other existing one-parameter
quantities such as the mean path length, diameter and number of triangles only show

only the monotonicity.

log,Complexity
®
° ,.f‘..h °
145 b hd
° e
..
140}
»
[}
135 @
1301°*
[ ]

0 0.2 0.4 0.6 0.8 1
Probability p

Fig. 7 The log-scale complexities of the Watts and Strogatz model
W5,(100,6) with p = 0.0 ~ 1.0. As the randomly rewiring probability p
increases, the complexities reach maximal for intermediate p around 0.5, while

they in turn decrease toward p = 1.0.

4.1.3 The number of triangles »

The Number of triangles in the Watts and Strogatz model W S,(n, k) is gradually
decreasing than the mean path length.(see Fig.8). The number of triangles is crossly
related to the clustering coefficients by its definition(see Sec.2.1). Indeed as in Fig.2
and Fig.9, the the clustering coefficients have a tendency to preserves high values
near p = 0 and so there is a region in which the clustering is high and the mean path
length is simultaneously lows.

The existence of enough number of triangles for rather high values of p coincides
with the results of [13] and is one of the basic property of the WS model.

21



Number of triangles
300
250
200
150
100 *

50 .
O 02 0.4 06 0.8 1

Probability p

Fig. 8 Number of triangles in the Watts and Strogatz model W.S;(300,4).
The numbers are decrease monotonically as p increases from 0 to 1 in a similar
fashion as the cases of the relative mean path lengths in Fig.9 and Fig.2. Unlike
the case of the mean path length, the number of triangles does not decrease

rapidly but gradually near p = 0.

4.1.4 Mean path lengths and diameters

As mentioned in Sec.4.1.3, the mean path lengths decrease rapidly than the number
of triangles(see Fig.9). Fig.9(a) and (b) which indicate the behavior of the diameters
is similar as that of the mean path length suggests that specific topological fstructures
of the network with the small-world property is not localized but scattered fully to
the network by means of the random rewiring process. This result support the fact
a very small number of rewirings change the network’s global structure, dscribed in
Sec.4.
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Fig. 9 Mean path lengths and diameter ratios of the Watts and Strogatz
model WS,(1000,10) from p = 0.0 ~ 1.0. The diameter ratio is define as
a ratio of the diameter of WSy(n, k) to the diameter of WSo(n, k) which is
exactly n/k. Both (a) the mean path lengths and (b) the diameter ratios are
rapidly decrease near p = 0 contrary to the case of the number of triangles(cf.
Fig.8).

4.1.5 Eigenvalue distribution

The eigenvalue distributions of both the adjacency and the associated Laplacian
matrices are computed for the the Watts and Strogatz model W.S,(n, k)(see Fig.10
and Fig.11). Unfortunately the results do not show any clear-cut distinguishable
distribution in p as shown in Fig.4, while in the case of the Barabasi and Albert model
the eigenvalue distributions are somewhat distinguishable(Fig.16). This fact might
say that the eigenvalue problem of the WS model is unstable. We have to execute

careful computations or prepare the enough number of vertices in the computaions.
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Fig. 10 (conties to Fig.11) Eigenvalue distributions for the adjacency matrices
and their Laplacians of Watts and Strogatz model W S,(300,4) for cases (a)
p = 0.0, (b) p = 0.1. There are no clear-cut differences among Case (a), (b)

and (c)(d) in Fig.11.
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Fig. 11 (continued from Fig.10) Eigenvalue distribution for the adjacency
matrices and their Laplacians of Watts and Strogatz model W S,(300, 4) for
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4.2 Barabasi and Albert model

The Barabési and Albert model BA(step, mg, m) starts from initially the complete

graph K,,o. At each preferential attachment process, one vertex with m edges is add

to this growing-up network. If m = 1, the generated BA network is almost the tree,

because there is no loop in the network except the initial complete graph. But for

m > 2, then loops are formed and the network becomes complicated.
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Degree distributions

The Barabési and Albert model BA(step, mg, m) have the power-law degree dis-

tribution even for small number of vertices(see Fig.12). Within our expeiments, the



exponents in the power-law distributions are same, independent on the number of
attachment edges m’s.

(a) (b)
log Frequency. ‘ log Frequency
0 e 0 "
o
_1 _1 L4
°
)
-2 ° -2 .
°
-3 . -3
e o
_4 -
LR 4 s o
.
-5 -5 e o0 0o o
. B e 0 0 K] . N o 0 06 ® o
-0 0.5 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
log degree log degree
(©)
log Frequency
0
_11®
-2 o ©®
! )
-3 L
)
-4 [ ]
®e
L)
-5 [}
e o o oo

1.5 2 2.5 3 3.5 4
log degree

Fig. 12 Degree distributions of the Barabasi and Albert model model
BA(300,3,m) with (a) m =1, (b) m =2, (c) m = 3.

4.2.2 The complexity ‘

As the preferential attachment process proceeds, the complexity of the Barabasi
and Albert model BA(step, m0, m # 0) increases gradually for a while and afterward
grows up dramatically (see Fig.13), in contrast to the Watts and Strogatz model
W S,(n, k) where its complexity as the function of the random rewiring probability p
is not monotonic(Fig.7).

If m = 0, the generated graph is an union of the tree and the complete graph K.

Thus the complexity is constant for every step and equal to m'ono—z, the complexity

of Ko(cf. Corollary 16).
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Fig. 13 Complexities of the BA model BA(300,3,m) for(a) m = 2 and (b)
m = 3. As the preferential attachment process proceeds, the complexities of
BA(step, m0, m # 0) grow suddenly after some thresholds.

4.2.3 The number of triangles

e
100 150 200 250 300

The numbers of triangles of the Barabési and Albert model BA(step,mg, m) in-
crease monotonically(see Fig.14). This monotonicity is rather normal than the case
of the complexities which show the drastic growth(Fig.13).
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Fig. 14 Numbers of triangles in the BA model BA(300,3,m) for (a) m = 2

and (b) m = 3.
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4.2.4 Mean path lengths and diameters

The mean path lengths and diameters of the Barabasi and Albert model
B A(step, mg, m) also increase monotonically as in the case of the number of triangles
in Fig.14(see Fig.15). It is interesting that the growths of the diameters are rather
stepwise than the growth of the the mean path length and that the shapes of the
diagrams are seemed invariant under the appropriate scaling.
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Fig. 15 Mean path lengths and diameter of the BA model BA(300,3,m) for

(a) m=1, (b) m =2 and (c) m = 3.

4.2.5 Eigenvalue distribution

The eigenvalue distributions of both the adjacency and the associated Laplacian
matrices are computed for the Barabasi and Albert model BA(300,3,m) for for (a)
m =1, (b) m =2 and (c) m = 3(see Fig.16). As in Fig.16, for even small attachment
steps and larger m, in this case step = 300 and m = 3, the shape of distributions
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become similar to the triangle-like as in Fig.5.
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Fig. 16 Distributions Eigenvalue of the adjacency matrices and their associ-
ated Laplacian matrices of the BA model BA(300,3,m) for (a) m =1, (b)

m =2 and (¢c) m = 3.
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5 Conclusion

We have computed the degree distributions, the complexities, the numbers of tri-
angles, the mean path lengths and the diameters, and the eigenvalue distributions
for both the adjacency and the associated Laplacian matrices of the relatively small-
size networks constructed by the Watts and Strogatz(WS) and the Barabési and
Albert(BA) models.

We could verify that many of the small-world and scale-free properties are hold
even for these small networks. Remark that these computed properties are not really
relevant to the eigenvalues but directly derived from the matrices of the networks
without any numerical errors.

However as far as the eigenvalue distributions of the WS model, unfortunately there
are no obvious differences among the distributions with different values of the random
rewiring probability p, while the careful and large-size simulations show that there
is apparent differences among the distributions as in Fig.4. On the other hand, the
eigenvalue distribution of the BA model become similar to the shape obtained by the
careful and large-size simulations as in Fig.5.

Thus the fact above requires to study the differences of the algebraic structures
between these network models exhaustively. In fact, the WS model has specific regions
of p in which two opposite properties are  simultaneously coexistent; the region with
high clustering and simultaneously low mean path length, and the region with low
mean path length and simultaneously high complexity, etc. The complexities of the
WS model behaves not monotonically and take maximal value around p = 0.5. This
behavior is newly discovered here.
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