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[Abstract]

This paper demonstrates the process of using the Web-Based Approach to Neural Networks and
Liner Regression by working through the British TPI model. The Hybrid Approach to Neural networks
and Linear Regression was proposed in 2003 as a solution to achieve both high data consistency and
lucidity in model interpretation. The Web-Based Approach is a further development to simplify the com-
putation process and allow more researchers to carry out hybrid approach analyses at ease. Using the
hybrid approach at the Web-Based system, we manage to find a British TPI model, which is more con-
sistent with the data without losing the simplicity in interpretation.
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1. Introduction.
Building Tender Prices are contract prices agreed between clients and contractors for construct-

ing buildings. Since buildings are heterogeneous, the general price level of constructing new buildings

' Yu and Ive (forthcoming) explicate in more detail the TPI complication method in Britain.
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needs to be measured by a price index — Tender Price Index (TPI) '. TPI is a useful indicator of the gen-
eral price level movement in building Market and thus is a component of the Gross Domestic Product
deflator.

It is different from the construction price index (CPI) calculated by the Japanese Ministry of Con-
struction in the sense that TPI is an output index measuring the prices of different components of build-
ings while CPI measures input costs such as material prices and labor wages. Since TPI is a macroeco-
nomic indicator like consumer price index, it is generally believed that TPI is driven by macroeconomic
factors such as unemployment levels, labor wages, material price, oil price, profits in manufacturing sec-

tor and so on. We will return to it in the next section.

In Britain, the major applications of TPI modelling and forecasting for government and the private

companies are as follows:

1. For government: by knowing the movement of the general price level of constructing buildings
in the future, the government can form better fiscal policy. They can build hospitals, schools,
and social housing at the time of lower price to stabilise the economy. When they expect there
will be a deflation (i.e. a drop in the building TPI), they can speed up the programme of con-
structing new buildings to curb the deflation.

2. For private property developers: accurate forecast of TPI allow them to have better financial
planning of their development projects. Particularly in some cases, they would sell or lease the
properties before they are constructed.

3. For contractors: accurate forecast of the TPI allow them to have a better view of the competi-
tive level of the market. Therefore, they will be in a better position to submit competitive and

sustainable bids for new building projects.

Therefore it is not surprising that a lot of research efforts have been devoted to the modelling and
forecasting of TPI (Akintoye et al 1998, Akintoye & Skitmore 1993, Bowen & Edwards 1985, Dawood
2001, Fellows 1991, Goh 2005, McCaffer et al 1983, Ng et al 2004, Runeson 1988, Ssegawa 2003 and
Taylor & Bowen 1987). The statistical workhorse underpinning these studies is linear regression model
because the result of linear regression is simple to interpret, but it may not fully utilise the data informa-
tion for accuracy. Akintoye & Skitmore (1993) provide a sophisticated linear regression model to relate
the British TPI to other macroeconomic factors such employment levels, real interest rates, labor wages

and material prices.



Using the information and model in Akintoye & Skitmore (1993), this paper aims at demonstrating
the appealing feature of the hybrid approach to neural network and linear regression. This approach
was proposed by Asano and Tsubaki (2003): while maintaining the simple interpretational facet of lin-
ear regression, the hybrid technique improves the accuracy of the model. Asano et al (2006) applied
the hybrid approach to Data Editing and also propose the Asano-Bhattacharyya graph to facilitate
visual inspection of the model structure. This paper introduces the Web-based Data Analysis which was
planned and developed by Asano and Tsubaki in 2007. The intention is to facilitate all researchers to

carry out the hybrid approach analysis through the internet at ease.

2. Model and Statistics

In addition to the academic research mentioned in the introduction, there are a few organisations
in Britain modelling and forecasting Building TPI such as Building Cost Information Services (BCIS),
Davis Langdon LLP, and the Department of Business, Enterprise and Regulatory Reform. However, all
of these organisations such as BCIS would not disclose their models because the models are their trade

secret.

We find that Akintoye and Skitmore is the most thorough academic research in modelling TPI in
Britain. In Akintoye and Skitmore (1994), they compare the forecasts of their models to the forecasts of
two well established private organisations in Britain, and find their model perform better. The model is

described and explained in Akintoye and Skitmore (1993).

For simplicity, we focus on the single structure equation of construction price estimated in Akin-
toye and Skitmore (1993: pp. 285). When we used the data from Akintoye and Skitmore (1993) for the

period between 1974Q1 and 1988Q4, we have obtained the linear regression result as follows:

In TPIt =-3.131 + 0.679 In BCI t + 0.005 In STR t4 - 0.341 In PRO t-2
-0.133 In FRM t-5 + 0.003 RIR t-3 + 0.423 In MAN t7 - 0.194 In EMPt-2
+0.459 In GNPt +0.057 OIL t-1
Adjusted R square = 0.965; AIC =-405.77
Where,
BCI : labour wage & material price
STR : number of strikes or stoppages
PRO : labour productivity

FRM : number of construction firms



RIR : real interest rate

MAN : profit margin in manufacturing sector

EMP : level of unemployment

GNP : real Gross National Product

01l : Oil crisis dummy for 1978Q2 to 1980Q2

The result is comparable to that reported in Akintoye & Skitmore (1993: pp. 285) but is different in

the values of same coefficients. We have contacted Professor Akintoye and he could not find any errors
in our linear regression analysis. He currently attempts to figure out why he got a different result and it

appears that he made some errors in the data input process.

Despite the small difference, the result confirms that TPI is related to labour wage and material
price (measured by BCI), number of strikes or stoppages (measured by STR), labour productivity
(measured by PRO), number of construction firms (measured by FRM), real interest rate (measured
by RIR), profit margin in manufacturing sector (measured by MAN), level of unemployment (measured
by EMP), real Gross National Product (measured by GNP), and oil price (OIL is a dummy for the pe-
riod of oil crisis: 1978 Q2 to 1980 Q2). All signs of the coefficients are as expected: a higher material
price, more industrial actions, a higher interest rate, a higher manufacturing profit margin and a higher
GNP all push the TPI higher; whereas a higher labour productivity, more construction firms, and higher

unemployment rate should reduce the rise in TPL

3. Web-based Data Analysis: A British TPI Modelling

We have applied the hybrid approach to neural networks and linear regression proposed by Asano
& Tsubaki (2003) to model the British TPI. Limited by the length of the paper, we do not repeat the pro-
cedure here. Asano and Yu (2007) demonstrated how to apply the hybrid approach to model building
cost data from Hong Kong.

In the past, the lack of access to appropriate computer software and the barrier to computer pro-
gramming knowledge may prohibit some researcher to carry out hybrid approach analysis. Because
of this, we have set up a webpage to allow researchers to carry out hybrid approach analysis. No prior
knowledge of computer programming is required, and we will demonstrate how to use this Web-based

Data Analysis tool to apply the hybrid approach to the British TPI Modelling.

The webpage address of the Hybrid Approach to Neural Networks and Linear Regression is as be-

low, and an operating manual (both English and Japanese versions) can be found at the webpage.
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To begin with, we have 9 potential independent variables (p = 9). Having uploaded the data (in CSV
format) to the webpage, and it computes that the number of hidden layer to minimize AIC is 6 (g = 6).

Figure 3 provides the AIC minimization result obtained from the webpage.

The Web-based Data Analysis programme also provides the weightings of the independent vari-

ables in the 6 hidden layers as shown in Figure 4.

Figures 5 and 6 show the Sigmoid Decomposition of the 6 hidden layers with and without the dependent
variables (TPI). Using the step-wise multiple regression method at 0.01 significance level, only 1 hidden
layer: out4 is chosen (¢'=1) from the six potential hidden layers. (Figures7).

Fixing ¢' = 1 as shown in Figure 7, the programme goes on to use backward elimination at 0.05 signifi-
cance level to select independent variables in the linear part of the model. 6 independent variables (p’ =
6) are chosen from the 9 potential variables as shown on Figure 8. The Web-Based Data Analysis pro-
gramme also provides graphical presentation of the result in 2-D and 3-D Asano-Bhattacharyya Graph.
Figure 9 is an example of the 2-D Asano-Bhattacharyya Graph.
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4. Conclusion

Taking the most thorough British TPI Model and the associated dataset we can find, we apply the
hybrid approach to neural networks and linear regression to re-model the TPL The hybrid approach
model is found to be more succinct with improved accuracy measured by AIC. This complex data analy-
sis process is being automated in the Web-Based Data Analysis and the process to obtain the hybrid

model for British TPI is demonstrated.
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